If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x=560^2
We move all terms to the left:
2x^2+3x-(560^2)=0
We add all the numbers together, and all the variables
2x^2+3x-313600=0
a = 2; b = 3; c = -313600;
Δ = b2-4ac
Δ = 32-4·2·(-313600)
Δ = 2508809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2508809}=\sqrt{289*8681}=\sqrt{289}*\sqrt{8681}=17\sqrt{8681}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-17\sqrt{8681}}{2*2}=\frac{-3-17\sqrt{8681}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+17\sqrt{8681}}{2*2}=\frac{-3+17\sqrt{8681}}{4} $
| -4x+6=2(-2x+3) | | 8x-5+10x+14=360 | | -2(y-4y)+9=-6(2y-y)+5+11y | | 48-y=243 | | C(6x-2)+20+90=180 | | 3r-2=-14+7r | | 12-2(x+3)=6-2x | | 2/3x+2=17 | | -171=-19x | | 18-(x-5)=6x+2 | | 139=-7k+6(8-k) | | 7x-3=10x-5.4 | | 4=11/2h | | 9z-z=32 | | 4=1/2h | | –7v+–23=68 | | x+150=36+x | | 2(6x+2)+6=12x+10 | | -2(-8+5x)=-94 | | 3q+2q-11q=-12 | | 7y+6=33 | | 3d÷8=2d-17 | | 7v+23=68 | | 3x-32=1x-40 | | 1+8x+9=-30 | | 5x+7=-14+x | | 3x-5=6x+25 | | 180-x+30=x+170 | | 4(2x–5)=3x+2 | | 5x^2-59x-12=0 | | 11u-6u-10=15 | | 7/8n=3.5 |